Porting and FPGA Implementation of LXDE Desktop
Environment Based on RISC-V

Xiaofeng Zou
Inspur Artificial Intelligence Research
Institute and Shandong Yunhai
Guochuang Cloud Computing
Equipment Innovation Center Co.,

Tuo Li
Inspur Electronic Information
Industry Co., Ltd. and Inspur
Artificial Intelligence Research
Institute, Beijing,, China,

Rengang Li
Inspur Electronic Information
Industry Co., Ltd. and Inspur
Artificial Intelligence Research
Institute, Beijing,, China,

Ltd., Jinan,, China, lituo@inspur.com lirg@inspur.com
zouxf@inspur.com
Linlin Yang Xiankun Wang Changhong Wang

Shandong Yunhai Guochuang Cloud
Computing Equipment Innovation
Center Co., Ltd., Jinan,, China,
yanglinlin@inspur.com

ABSTRACT

As a new generation of open and reduced instruction set archi-
tecture, RISC-V has the characteristics of concise instruction set,
modularity and scalability, and has been quickly and widely used
due to its advantages of agile development mode and complete
tool chains, but there are few desktop systems based on RISC-V at
present. Based on the open source RISC-V BOOM core, this paper
constructs a desktop system which can start the LXDE graphical
interface on Xilinx VU440 FPGA. Specifically, we implement a va-
riety of peripheral modules such as bus conversion and VGA on
the boom core, and port the open source bootloader, Linux 4.15
kernel and LXDE desktop environment. Under the desktop system,
standard test sets, such as CoreMark can be run normally, and the
test results show that the performance of the system is at a high
level. By extending peripherals, this RISC-V prototype system can
be used to realize SoC in many special areas.

CCS CONCEPTS

« Computer systems organization; « Embedded and cyber-
physical systems; « System on a chip;

KEYWORDS
RISC-V, BOOM, SoC, Desktop environment

ACM Reference Format:

Xiaofeng Zou, Tuo Li, Rengang Li, Linlin Yang, Xiankun Wang,
and Changhong Wang. 2021. Porting and FPGA Implementation of LXDE
Desktop Environment Based on RISC-V. In The 5th International Con-
ference on Computer Science and Application Engineering (CSAE 2021),

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CSAE 2021, October 19-21, 2021, Sanya, China

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8985-3/21/10...$15.00
https://doi.org/10.1145/3487075.3487151

Shandong Yunhai Guochuang Cloud
Computing Equipment Innovation
Center Co., Ltd., Jinan,, China,
wangxiankun@inspur.com

Inspur Electronic Information
Industry Co., Ltd. and Inspur
Artificial Intelligence Research
Institute, Beijing,, China,
wangchh01@inspur.com

October 19-21, 2021, Sanya, China. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3487075.3487151

1 INTRODUCTION

In 2010, David A. Patterson et al. [1] proposed the fifth-generation
reduced instruction set architecture RISC-V. The instruction set
adopts the BSD open source protocol and has the advantages of
concise instruction, modularization and scalability [2]. At the same
time, Chisel language can realize agile chip development, and the
complete tool chain makes RISC-V get rapid promotion and appli-
cation, and therefore a large number of open source RISC-V cores
have appeared.

In recent years, the research of RISC-V mainly focuses on the
improvement of instruction set standards and ecosystem. The SoC
application systems built with RISC-V as the core, especially RISC-V
platforms which can start the graphical interface of the operating
system are relatively rare. Based on the open source RISC-V out-
of-order execution core-BOOM, this paper implements a variety
of peripherals such as VGA, DDR, USB, IIC, SD, QSPI and UART
through system bus conversion, ports the open source bootloader,
Linux 4.15 kernel and LXDE desktop environment, and constructs
a desktop system that can start LXDE. The prototype system is
implemented with Xilinx VU440 FPGA, and standard test sets such
as CoreMark, Dhrystone and NBench can be run in the system
desktop environment.

2 BOOM

BOOM (Berkeley Out of Order Machine) is an out-of-order ex-
ecution processor core with RISC-V instruction set architecture,
released by Christopher Celio [3] in 2015. The second version of
the architecture BOOM v2 [4] was released in 2017, and the third
version BOOM v3 [5] was released in 2020. BOOM adopts RV64G
instruction set, and it is a superscalar processor with out of order ex-
ecution. Supporting out of order execution can improve the instruc-
tion level parallelism in code, realize fine-grained data prefetching,
and improve the efficiency and performance of system instruction
execution. BOOM can support virtual machine mode, boot Linux

https://doi.org/10.1145/3487075.3487151
https://doi.org/10.1145/3487075.3487151

CSAE 2021, October 19-21, 2021, Sanya, China

Fetch (3 cycles) Decode Issue Execute Writeback

Rename select

i & N :—i| koo %Tﬁ P
ispatcl) Lps Hf:RF
s |05 1f X,

Register Read

Mem Issue Queue

. —D—‘ Physical INT| £
Register

File (6R3W)

Branch Fetch
predictor | Buffer

Issue Queue

il

4
Physical FP
|_. Register Regfile
Bl File (3R2W) *

FrontBus AXIj > 4

B BootRom
5 ystem
B Bus » TLBroadCast
BOOM . *
Tike MemoryBus AX14
K—=>

Interrupt Xbar (mbus)
T e

Figure 2: BOOM SoC Structure.

mode and multi-core mode. Its implementation only uses 9000 lines
of Chisel hardware construction language code, and through highly
parameterized generator synthesizable RTL code can be generated,
the generation environment can be obtained through GitHub [6].

The instruction pipeline of BOOM V2 is shown in Figure 1 [7].
According to the pipeline function, the BOOM pipeline is divided
into 10 stages: fetch, decode, register rename, dispatch, issue, regis-
ter read, execute, memory, write back and commit. In fact, many
stages are combined in the implementation, the actual pipeline
mainly consists of the six stages in the Figure 1. The BOOM instruc-
tion pipeline has the following characteristics: the front end of the
instruction pipeline adopts a three-station design, including a large
group-associated branch target buffer (BTB) and a pipelined register
renaming station, with the floating point and integer registers sepa-
rated; A special floating-point calculation pipeline is designed; The
instruction launch windows of floating-point, integer and memory
access micro-operations are separated; A separate pipeline station
is used for launch selection and register read operations.

The SoC shown in Figure 2 can be generated using the RISC-
V BOOM environment of GitHub. The number of BOOM Tiles is
configurable, and the value is at least one, and each BOOM Tile
contains a BOOM core; The system bus contains an Xbar module,
the main function of Xbar is to realize the conversion between buses,
and BOOM Tile can access all other SoC modules through System
Bus; Memory Bus can access external storage, and the output is
64-bit AXI4 bus; MMIO interface is a 64-bit AXI4 bus; IntXbar is an
interrupt crossbar, which collects interrupts from internal devices

Xiaofeng Zou et al.

Debug
BootROM‘ ‘M dal ‘
K

¢ N A 4 A 4 A A

S
TL_C Interface (TileLLink)
)

TL_UL Interface ‘

Figure 3: Desktop System Structure.

and external devices and transmits them to PLINT; PLINT is an
external interrupt to receive the interrupt signal from IntXbar, and
the number of interrupts can be configured; CLINT is an internal
interrupt, with two basic output interrupts int0 and int1, int0 is a
software interrupt, and int1 is a timer interrupt.

BOOM Core is the core module of the BOOM processor, which
implements the whole process from instruction decoding to write
back. In this paper, the generated BOOM core is the second ver-
sion, and by modifying the parameter configuration in the BOOM
generator, the dual core processor of BOOM v2 is generated.

3 HARDWARE ARCHITECTURE DESIGN

3.1 System Structure and Bus

Jonathan Balkind et al. [8] built an open-source, SMP linux-booting
RISC-V system scaling from one to many cores based on OpenPiton
and Ariane. In this paper, we expanded the system bus based on the
generated BOOM SoC basic framework and reserved bus interface.
Through the system memory bus, using the DDR controller on
the FPGA, we connect DRAM as the memory, and design external
modules. We connect the display monitor through the VGA display
module, and connect the mouse and keyboard through the USB
module.

The SoC system bus is the main channel for the core to extend
external devices. On the BOOM System bus, we extend the AXI bus
and APB bus by designing bridge conversion modules, arbiters and
peripheral bus buffers. The structure of the desktop system is shown
in Figure 3. Among them, BOOM Tile is the core module containing
the BOOM processor, System Bus is the generated system bus, the
processor and BOOM’s own peripherals are mounted on the system
bus through the TL_C and TL_UL interfaces of TileLink, and the
peripherals we added are mounted through the AXI/APB bus. The
whole SoC system uses three kinds of buses, namely TileLink, AXI
and APB.

Porting and FPGA Implementation of LXDE Desktop Environment Based on RISC-V

Table 1: SoC system Bus Address Space Division

CSAE 2021, October 19-21, 2021, Sanya, China

Size

Module Base Address
Debug 0x0000_0000
Mode 0x0000_1000
Error 0x0000_3000
BootROM 0x0001_0000
Clint 0x0200_0000
Plic 0x0c00_0000
MMIO 0x6000_0000

0x6100_0000

0x6100_3000

0x6200_0000
Mbus 0x8000_0000

0x0000_1000
0x0000_1000
0x0000_1000
0x0001_0000
0x0001_0000
0x0400_0000

0x0100_0000
0x0000_3000
0x0001_0000
0x0001_0000

0x1000_0000

3.2 Address Space and Peripherals

Based on the original system address space of the BOOM core SoC,
this paper extends the peripheral module on the MMIO address
space. The main address space of the system is shown in Table 1

After the implementation of the above peripheral modules, we
design or modify the drivers of the corresponding peripheral devices
such as Framebuffer and USB in Linux, and port the drivers based
on the Linux kernel.

4 FIRMWARE AND SOFTWARE DESIGN

4.1 Bootloader

In this paper, the bootloader of the BOOM SoC system refers to the
zeroth stage bootloader (ZSBL), first stage bootloader (FSBL) and
Berkeley bootloader (BBL) design methods in the RISC-V commu-
nity [9]. Among them, ZSBL can be programmed in the on-chip
BootROM, or it can be externally downloaded to the BootROM via
UART. FSBL and BBL are stored in SD card or QSPI flash according
to the actual boot mode.

The RISC-V system starts from the programmed code in the
on-chip Reset Vector. First, it judges the start mode and interrupt
cause, and jumps to the on-chip ZSBL, executes the ZSBL code,
sets the interrupt and exception vector table, configures related
registers, and floating-point, branch prediction, MMU, etc. After
completing the initial settings, perform the initialization of the
system and the C environment, and then jump to the main function
for execution, obtain the FSBL position through the GUID, and move
the FSBL to the L2 LIM and continue execution. FSBL is responsible
for transporting the boot program and kernel from SD card to
DDR, BBL is responsible for parsing DTS, initializing individual
peripheral devices, initializing the configuration of the CPU, and
booting the kernel. The firmware startup process is shown in Figure
4

4.2 Linux Kernel

The Linux kernel used in this paper is version 4.15. RISC-V tool
chain is used to complete the compilation of the Linux kernel
and RISC-V library files, and realize the porting of Linux version

Specification
Debug
Peripherals on chip
Mask RAM
USB, UART, GPIO,IIC
SD, QSPI
VGA
DDR
Power On ZSBL
 ——_—
(Reset Vector) (BootROM)
CPU/C
. . Start.s
Environment Init
v
. . FSBL
main function >
(Mask Rom)

v

BBL < Move BBL/Kernel
v
Parsing DTS > Initialize Devices
v
Kernel Config CPU

(Kernel and LXDE)

Figure 4: Firmware Startup Process.

4.15 on the RISC-V prototype platform. And this paper implement
the memory-based root file system on the RISC-V prototype plat-
form, which realizing the data storage, hierarchical organization,
access and acquisition, etc. The root file system can be successfully
mounted after the kernel starts. The kernel code image file is stored
in the root file system, and the system boot program will load some
basic initialization scripts and services into the memory after the
root file system is mounted.

5 DESKTOP ENVIRONMENT

In this paper, we first ported Xorg as the display manager and
window manager. X window is composed of X server and X client,
and the communication between X server and X client is through
X protocol. As an X server, Xorg provides a basic display interface
for X client, and also reflects user’s operations to X client. It is an

CSAE 2021, October 19-21, 2021, Sanya, China

 LXDE. Xorg |[Libc. API

Application
[System][Virtual File Systems
call
Linux
Driver fb_open / fb_release / fb_write / fb_read

FramBuffer Driver 1

[Linux File J { FramBuffer SubSystem
System Bus Read/Write u Software

{ LCD Screen J

Figure 5: Desktop Environment Framework.

intermediate layer between X client and hardware, responsible for
the underlying operations.

LXDE [10] is a beautiful and international embedded desktop
environment based on GTK2. Compared with KDE and GNOME,
LXDE takes up less resources and is suitable for working on embed-
ded platforms. LXDE is a lightweight and fast desktop environment,
which is designed to be user-friendly and occupy less resources,
while maintaining low resource utilization. LXDE uses less memory
and CPU to present a feature-rich desktop environment as much
as possible. Unlike other desktop environments, LXDE strives to
be a modular desktop environment, so each component can be
used independently. This makes it easier to port LXDE to different
distributions and platforms.

Frame Buffer is an interface provided by the Linux kernel for
display devices. Upper-level applications can directly read and write
to the display buffer through Frame Buffer, and write operations
will be directly reflected on the display device. We first modified the
Frame Buffer driver to realize the interaction between the desktop
environment LXDE and the Linux kernel. Then we designed the
VGA display controller to realize the interaction between the Linux
kernel and the display device through the Frame Buffer, and open
up the graphical display link. The desktop environment framework
is shown in Figure 5

Use the Buildroot tool to write configuration files and Makefile
scripts for the various components of the Xorg and LXDE desktop
environments, including Ixde-common, Ixsession, Ixterminal, etc.
Then, based on the RISC-V gcc tool chain, cross-compile to generate
a root file system image file containing the desktop environment.
Finally, it is embedded in the Linux kernel and cross-compiled to

Xiaofeng Zou et al.

Post-Implementation

LUT mmm 7%
LUTE..x 19%;

FF m 29

BEAM e 14%
DEP 1 1%

IO oesm 9%
BUFG 1 1%
MMCM = 3%

PLL mmm 79

0%

[3]
L
=1

% 50% 75% 100%

m Utilization

Figure 6: FPGA Resource Utilization of Desktop System.

Figure 7: LXDE Desktop Environment.

generate the Linux kernel image file. The transplantation of Xorg
and LXDE on the RISC-V prototype platform was completed.

6 FPGA IMPLEMENTATION AND STARTUP

We implemented the SoC Logic on Xilinx Virtex UltraScale 440
FPGA, and the core logic frequency is 50MHz. and the logic uti-
lization rate is shown in Figure 6. The Linux image and desktop
environment program are stored in the SD card.

When the system starts, it is loaded into DDR step by step
through the firmware. Finally, the LXDE desktop environment
runs, it is successfully displayed on the LCD Screen through the
VGA display interface, as shown in Figure 7. The startup process
information is displayed on the serial port.

In the desktop environment, the mouse and keyboard input
is normal, and the desktop program operations such as window
switching and video playback can be performed. Standard test sets
such as CoreMark, Dhrystone and NBench can be run in the system
desktop environment.

7 CONCLUSION

Through the research and practice of the RISC-V development pro-
cess, this paper constructs a desktop system based on the open

Porting and FPGA Implementation of LXDE Desktop Environment Based on RISC-V

source RISC-V BOOM core, which can start the LXDE graphical in-
terface on Xilinx VU440 FPGA. Specifically, we implement a variety
of peripheral modules on the BOOM core, and port the open source
boot loader, Linux 4.15 kernel and LXDE desktop environment.
Under the desktop system, various applications can run normally,
such as playing video, window control, etc. Standard test sets, such
as CoreMark can be run normally.

The porting of the desktop environment will help to improve
the RISC-V ecosystem and provide research basis and reference for
the subsequent specific practical applications based on RISC-V.

ACKNOWLEDGMENTS

The work of this paper is partially supported by the Major Inno-
vative Project of Shandong Province (2019TSLH0125), The porting
work of the desktop environment and another work [11] are carried
out at the same time, based on a common research foundation. The
research findings, conclusions and reference designs used in this
article, only represent the author’s own views and have nothing to
do with commercial activities.

REFERENCES

[1] Andrew Waterman, Yunsup Lee, David A. Patterson, and Krste Asanovic (2011).
The RISC-V instruction set manual, Volume I: Base user-level ISA. Technical Re-
port No.UCB/EECS-2011-62, EECS Department, University of California, Berkeley,

[9

= =
=S

CSAE 2021, October 19-21, 2021, Sanya, China

May 2011, 7(9):475.

Krste Asanovic, David Patterson (2014). The Case for Open Instruction Sets.
MICROPROCESSOR report, August 2014(8):1-7.

Christopher Celio, David Patterson, Krste Asanovic (2015). The Berkeley Out-of-
Order Machine (BOOM): An Industry-Competitive, Synthesizable, Parameterized
RISC-V Processor. Technical Report No.UCB/EECS-2015-167, EECS Department,
University of California, Berkeley, 2015.

Christopher Celio, Pi-Feng Chiu, Borivoje Nikolic, David A. Patterson, Krste
Asanovic (2017), BOOM v2: an open-source out-of-order RISC-V core. Technical
Report No.UCB/ EECS-2017-157, EECS Department, University of California,
Berkeley, 2017.

Jerry Zhao, Ben Korpan, Abraham Gonzalez, Krste Asanovic (2020). SonicBOOM:
The 3rd Generation Berkeley Out-of-Order Machine. Fourth Workshop on Com-
puter Architecture Research with RISC-V (CARRYV). 2020.

University of California. https://github.com/riscv-boom/riscv-boom. . July 30,
2021.

Christopher Celio, Pi-Feng Chiu, Krste Asanovi¢, David Patterson (2018). An
open-source out-of-order processor with resilient low-voltage operation in 28nm
CMOS. Hot Chips 2018.

Jonathan Balkind, Katie Lim, Fei Gao, Jinzheng Tu, David Wentzlaff, Michael
Schaffner, Florian Zaruba, Luca Benini (2019). OpenPiton+Ariane: The First Open-
Source, SMP Linux-booting RISC-V System Scaling From One to Many Cores.
Third Workshop on Computer Architecture Research with RISC-V (CARRV).
2019.

SiFive, Inc. https://github.com/sifive/freedom-u540-c000-bootloader. July 30,
2021.

https://sourceforge.net/projects/Ixde/files/. July 30, 2021.

LI Tuo, ZOU Xiao-Feng, LIN Ning-Ya, ZHANG Lu, LIU Tong-Qiang, ZHOU Yu-
Long, LI Ren-Gang. Design of FPGA Prototype of Server Management Controller
Based on RISC-V (2021). Computer Systems Applications, 30(7), 136-141.

https://github.com/riscv-boom/riscv-boom
https://github.com/sifive/freedom-u540-c000-bootloader
https://sourceforge.net/projects/lxde/files/

	Abstract
	1 INTRODUCTION
	2 BOOM
	3 HARDWARE ARCHITECTURE DESIGN
	3.1 System Structure and Bus
	3.2 Address Space and Peripherals

	4 FIRMWARE AND SOFTWARE DESIGN
	4.1 Bootloader
	4.2 Linux Kernel

	5 DESKTOP ENVIRONMENT
	6 FPGA IMPLEMENTATION AND STARTUP
	7 CONCLUSION
	Acknowledgments
	References

